Continuing the Quest for High Yield Soybean

Crop Physiology Laborato

Department of Crop Sciences University of Minois at Urbana-Champaign

South Dakota Agri-Business Association Agronomy Conference Sioux Falls, SD, December 13, 2017

Do Growers Adequately Manage Soybean?

Test Your Knowledge of High Yield Soybean

 What is the world record soybean yield and what is the soybean yield gap?

The Soybean Yield Gap •US average soybean yields are currently about 50 bushels/acre

- World record soybean yield of 171.8 bushels in 2016
- Illinois record of 108.3
 bushels in 2015

The Six Secrets of Soybean Success

What Factors Have the Biggest Impact on Soybean Yield?

Not Secrets of Soybean Success, but Important to Overall Crop Productivity

 Corn yields 25 bu better when it follows soybean and needs 40-50 lbs less nitrogen fertilizer

Not Secrets of Soybean Success, but Important to Overall Crop Productivity

- Soybean improves soil tilth compared to corn
- Soybean root system is a taproot while corn roots are fibrous

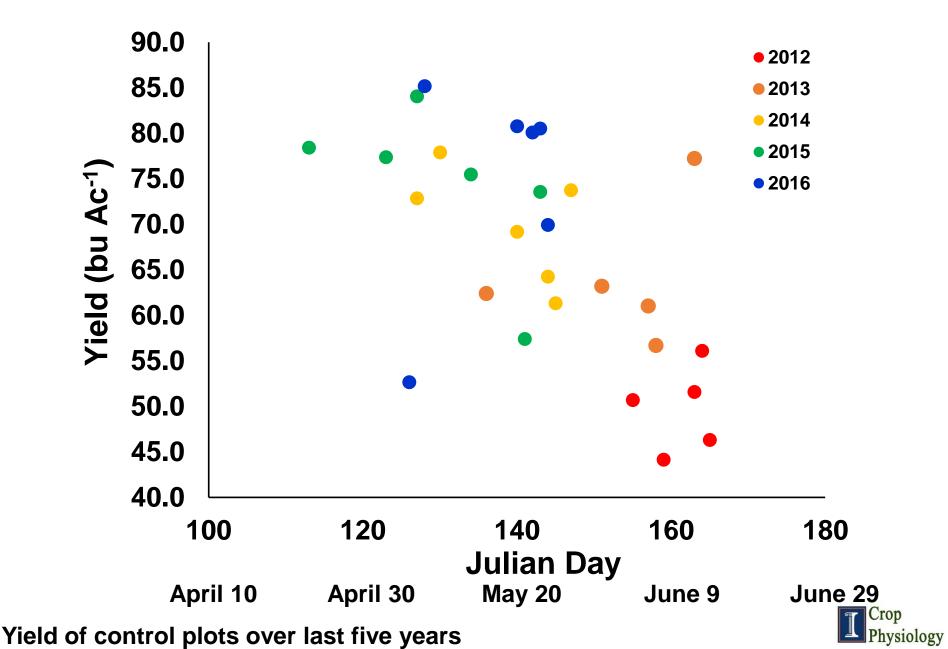
Soybean Improves Soil Tilth

Crucial Prerequisites, but not Secrets of Success

•Drainage

Weed Control

Proper Soil pH


The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	
3	
4	
5	
6	

Given key prerequisites

Soybean Yield by Planting Date

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	
4	
5	
6	

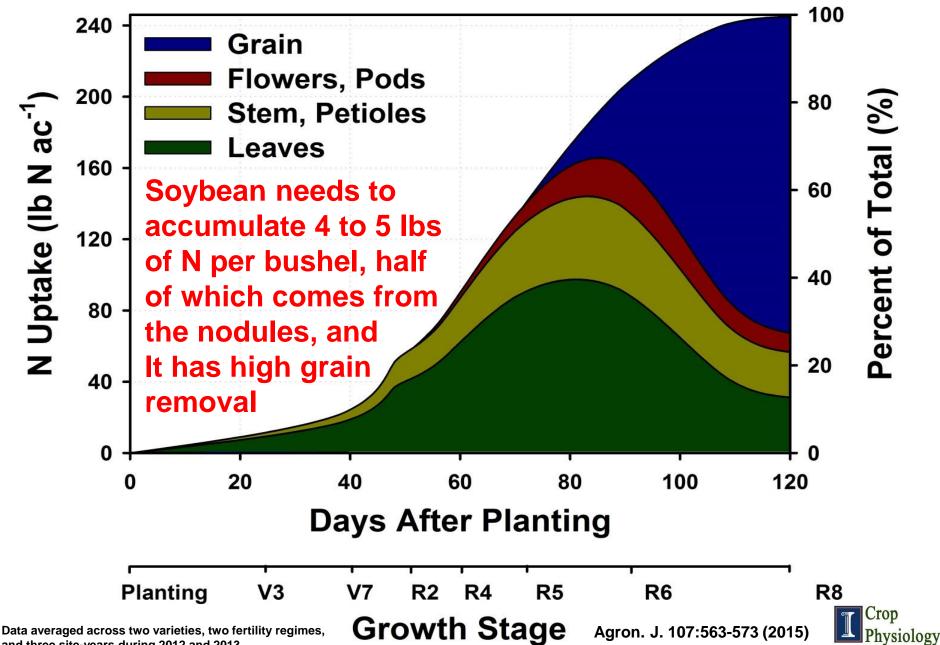
Given key prerequisites

Soybean Gets Some N from Fixation by Nodules

Test Your Knowledge of High Yield Soybean

 How much of soybean's N comes from the nodules?

About half or 50%


Test Your Knowledge of High Yield Soybean

 How much N does soybean need to accumulate per bushel?

4 to 5 lbs of N per Bushel

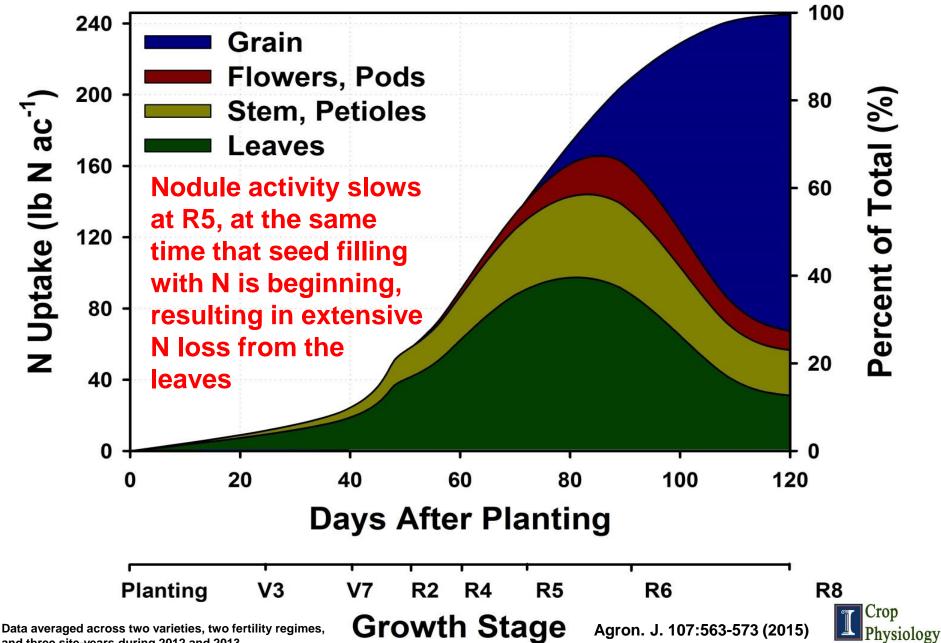
N Uptake & Partitioning for 60 Bushel Soybean

and three site-years during 2012 and 2013.

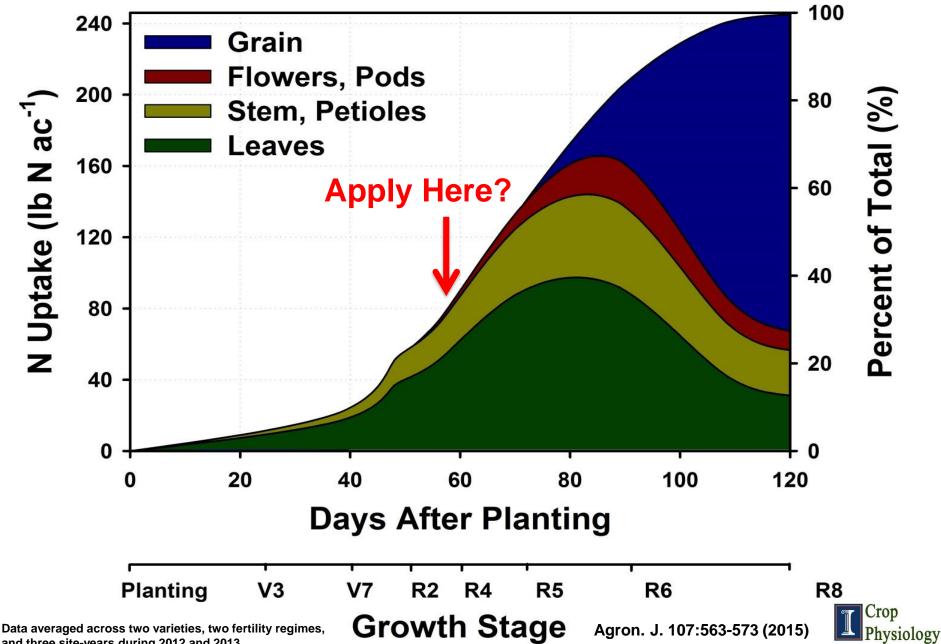
Nitrogen Needs and Removal by 60 Bushel Soybean Crop

Amount Required	*Amount from Nodules	Removed with Grain	Net Removal from Soil
Ib acre ⁻¹			
245	123	179	56

* Assuming 50% of total N accumulation supplied by N fixation from nodules


Data averaged across two varieties, two fertility regimes, and three site-years during 2012 and 2013

Facts about Soybean and N


- There is no such thing as a soybean N credit
- Soybean removes about a pound of N from the soil for each bushel that it produces

Should Supplemental N be Applied to Soybean?

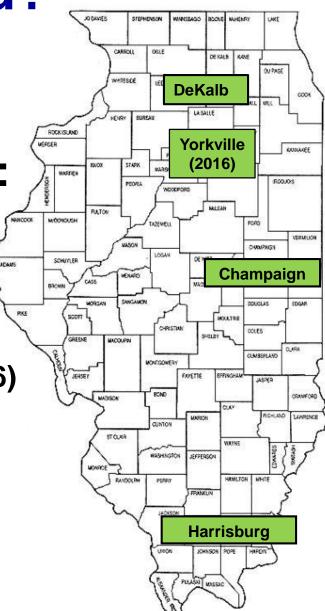
and three site-years during 2012 and 2013.

When Should Supplemental N be Applied to Soybean?

and three site-years during 2012 and 2013.

What Source of N Should be Applied?

	Conventional
Fertilizer N Source	wisdom on potential
	effectiveness
Ammonium nitrate	no
Ammonium sulfate	maybe
Urea/ammonium nitrate	no
Urea	maybe
Urea + urease inhibitor	yes
ESN (controlled release)	yes
	Стор



Can Supplemental Fertilizer N Increase Soybean Yield? O DAMES STEPHENSON

 Conducted at DK, CU, HB Illinois in 2014, 2015, 2016

Evaluated Eight N Sources:

- 1.) Unfertilized Control
- 2.) Ammonium Nitrate (AN)
- 3.) Ammonium Sulfate (AMS)
- 4.) Urea Ammonium Nitrate (UAN)
- 5.) Urea
- 6.) Urea + Limus (2015 & 2016)
 7.) AN + KNO₃ (KN) + AMS (2015 & 2016)
 8.) Environ. Smart Nitrogen (ESN)
- Applied at 100 lbs N/acre
- Broadcast applied before planting, and at V3, R1, R3

Response to N on Soybean- 2014-2016 Average of 9 Locations (100 lbs of N applied)

Source	Preplant	V3	R1	R3
		changes in	bushels acre	1
AN	3.9*	2.8*	3.2*	3.1*
AMS	2.3	1.4	2.2	1.9
UAN	3.7*	3.3*	2.9*	2.2
Urea	2.7*	2.2	1.9	2.4
Urea + Limus	1.2	2.0	2.2	2.6*
AN+KN+AMS	2.7*	1.2	2.6*	1.9
ESN	4.0*	2.9*	3.2*	2.2

Control = 72.5 *significantly different than control

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	
4	
5	
6	

Given key prerequisites

Typical Fertilization for Corn and Soybean in Illinois

- 180 lbs N, 90 lbs P_2O_5 and 100 lbs K_2O per acre applied to corn. No S or micronutrients
- No fertilizer applied to soybean

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs p	er acre	%
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Data averaged across two varieties, two fertility regimes,

and three site-years during 2012 and 2013.

Nutrient	Required to Produce		Harvest Index
	lbs p	er acre	%
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Data averaged across two varieties, two fertility regimes,

and three site-years during 2012 and 2013.

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs p	er acre	%
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Data averaged across two varieties, two fertility regimes,

and three site-years during 2012 and 2013.

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs p	er acre	%
Ν	245	179	73
P ₂ O ₅	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Data averaged across two varieties, two fertility regimes,

and three site-years during 2012 and 2013.

Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs p	er acre	%
Ν	245	179	73
P_2O_5	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Data averaged across two varieties, two fertility regimes,

and three site-years during 2012 and 2013.

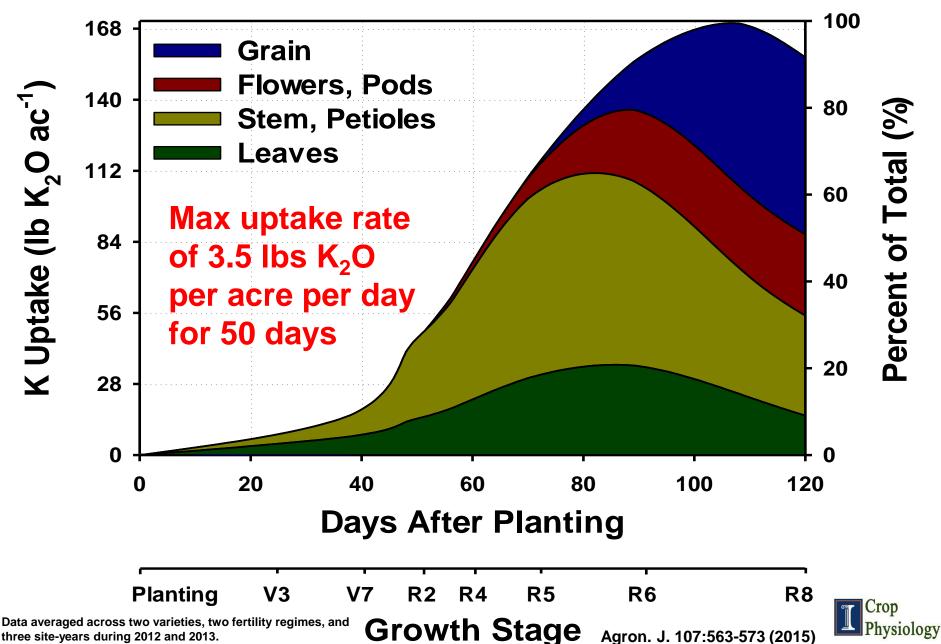
Nutrient	Required to Produce	Removed with Grain	Harvest Index
	lbs p	ber acre	%
Ν	245	179	73
P ₂ O ₅	43	35	81
K ₂ O	170	70	41
S	17	10	61
Zn (oz)	4.8	2.0	44
B (oz)	4.6	1.6	34

Data averaged across two varieties, two fertility regimes,

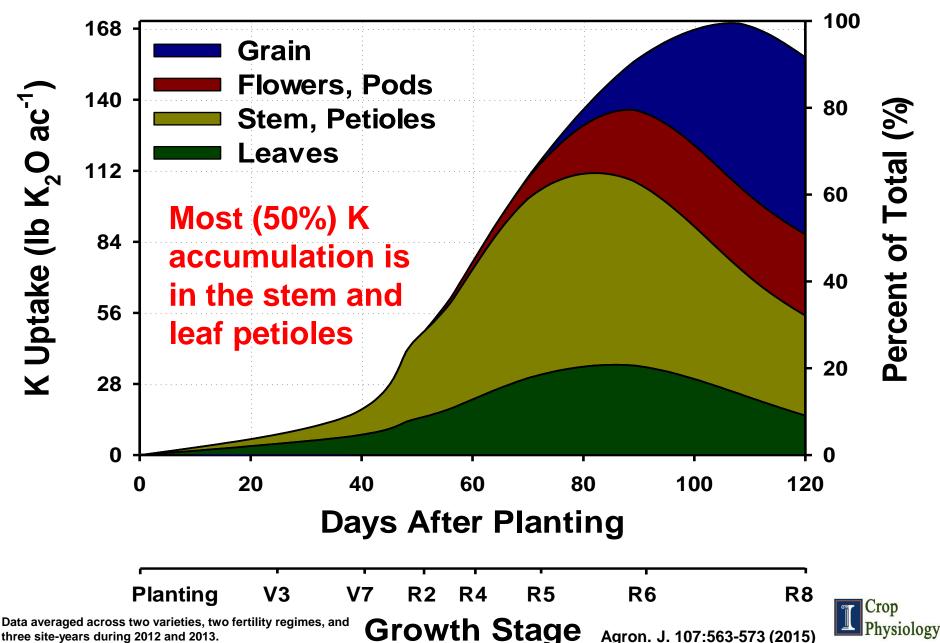
and three site-years during 2012 and 2013.

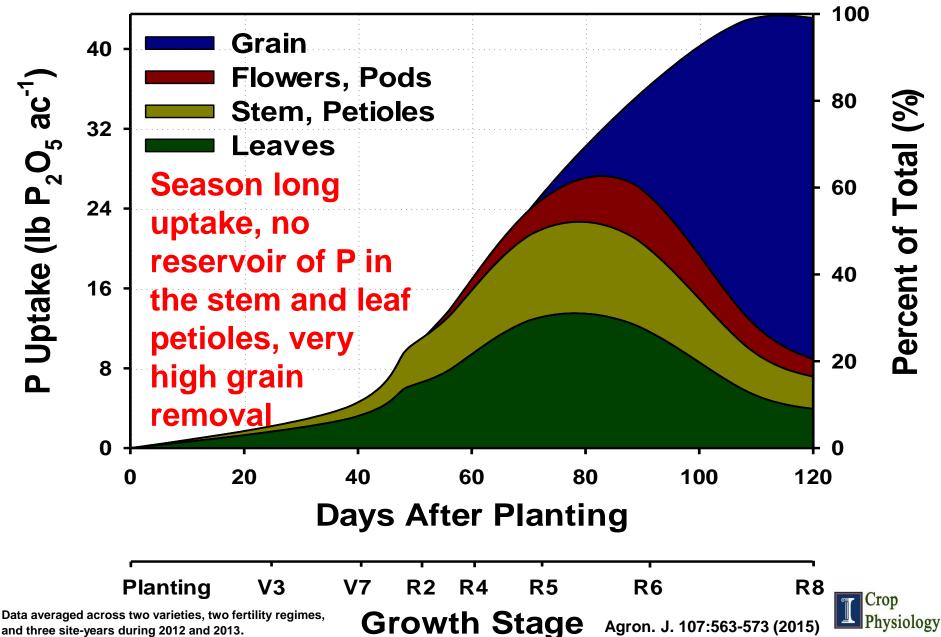
Typical Fertilization for Corn and Soybean in Illinois

- 180 lbs N, 90 lbs P_2O_5 and 100 lbs K_2O per acre applied to corn. No S or micronutrients
- No fertilizer applied to soybean


P and K Uptake and Removal by 60 bu Soybean vs 230 bu Corn

Nutrient	Required to Produce		Removed with Grain		Remain in Stover	
	Corn	Soy	Corn	Soy	Corn	Soy
	lbs per acre					
P_2O_5	101	43	80	35	21	8
K ₂ O	180	170	56	70	124	100


Corn data from Agron J. 105:161-170 (2013); Soybean data from Agron. J. 107:563-573 (2015)


K Uptake & Partitioning for 60 Bushel Soybean

K Uptake & Partitioning for 60 Bushel Soybean

P Uptake & Partitioning for 60 Bushel Soybean

and three site-years during 2012 and 2013.

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	
5	
6	

All Soybean Varieties are Not Created Equal

Variety	Yield	Variety	Yield	Variety	Yield
	bu acre ⁻¹		bu acre ⁻¹		bu acre ⁻¹
1	80.4	7	72.6	13	62.5
2	79.4	8	70.5	14	60.3
3	79.1	9	70.5	15	60.1
4	75.6	10	68.8	16	59.3
5	75.0	11	67.0	17	57.8
6	72.7	12	65.2		

17 varieties with standard management at Champaign in 2015

All Soybean Varieties are Not Created Equal

MG	Yield	MG	Yield	MG	Yield
	bu acre ⁻¹		bu acre-1		bu acre ⁻¹
3.3	80.4	3.7	72.6	2.5	62.5
3.9	79.4	3.8	70.5	2.9	60.3
3.8	79.1	3.7	70.5	3.1	60.1
3.5	75.6	2.9	68.8	2.5	59.3
3.6	75.0	3.0	67.0	2.8	57.8
3.1	72.7	2.6	65.2		

17 varieties with standard management at Champaign in 2015

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	
5	
6	

Soybean is Indeterminate

- Flower and leaf development at the same time
- Closest leaf provides most of the energy for pods at that node
 - Typical plant has 20 nodes

Source: Fig. 14 from Pedersen, 2009, Soybean Growth and Development.

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	Foliar Protection
5	
6	

Soybean Yield Components

Yield = Pod number/acre x

Seeds per pod x

Weight per seed

The Legendary 5 Bean Pod

Crop Physiology

Champaign, 2013

Soybean Yield Components

Yield = Pod number/acre x

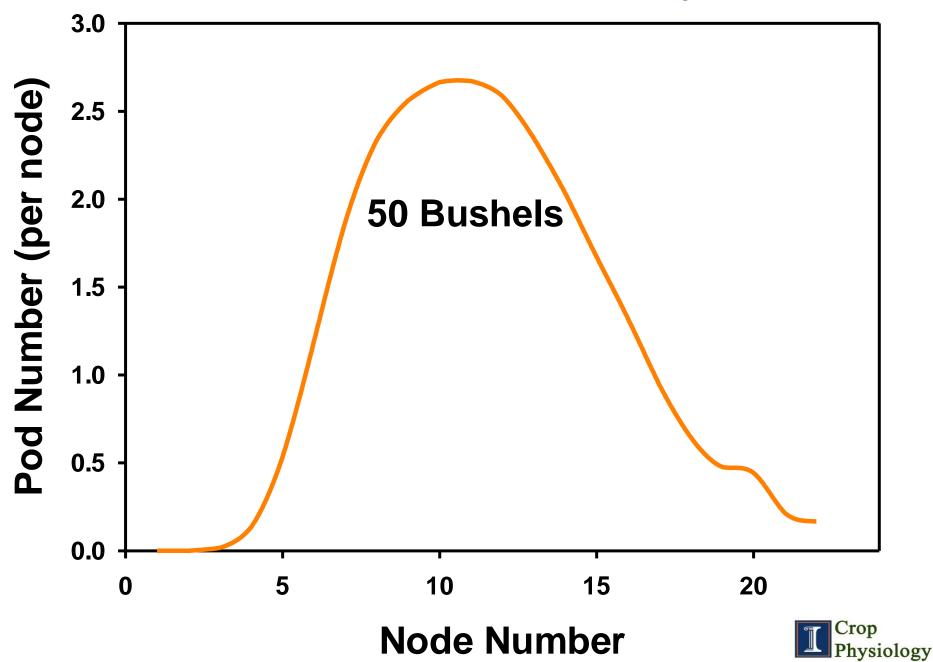
Seeds per pod x

Weight per seed

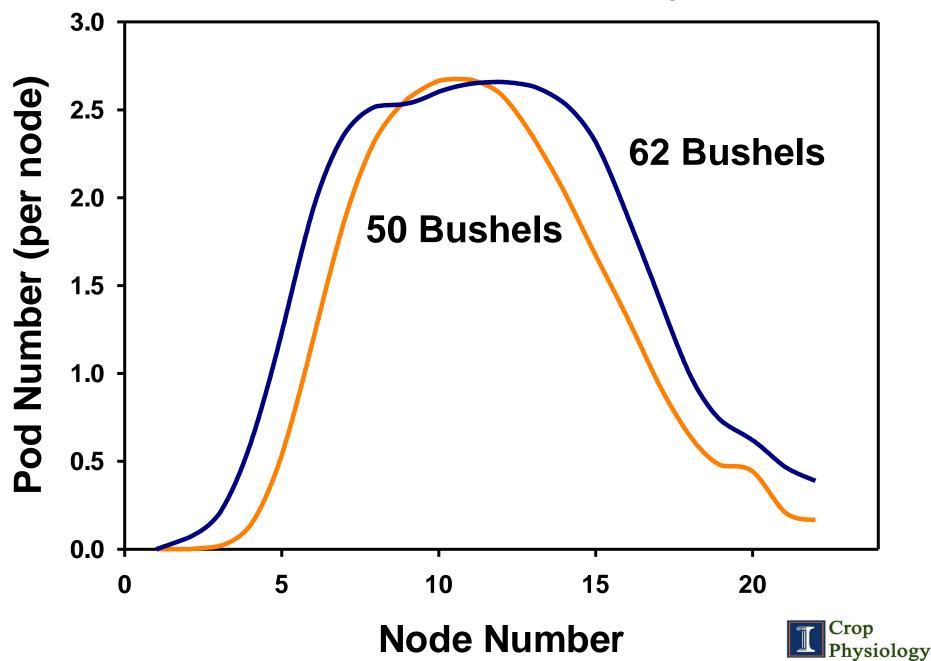
The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	Foliar Protection
5	
6	

Soybean Yield Components


Yield = Pod number/acre x

Seeds per pod x


Weight per seed

How Does Pod Number Effect Soybean Yield

How Does Pod Number Effect Soybean Yield

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	Foliar Protection
5	Seed Treatment
6	

Given key prerequisites

Impact of Seed Treatment on Emergence

Untreated

Fungicide, Insecticide, Nematicide

Photos courtesy of AJ Woodyard, BASF

Impact of Seed Treatment on Soybean Growth

Fungicide only

Fungicide, Insecticide, Nematicide

R2 growth stage, Champaign, IL

Impact of Seed Treatment on Soybean Growth

Plants at growth stage R2 at Champaign, IL

The Six Secrets of Soybean Success

Rank	Factor
1	Weather
2	Fertility
3	Genetics/Variety
4	Foliar Protection
5	Seed Treatment
6	Row Spacing

Given key prerequisites

Row Spacing Affects Light Interception And Canopy Air Movement

30" Rows

20" Rows

Champaign, IL

Standard vs High Tech System 2014-15

PhosphorusP applied year before to corn75 lbs P2O5 as MESZ (N, P, S, & Zn)Banded 4-6" under row at planting

Potassium

Row Spacing

P and K

- K applied year before to corn 75 lbs K₂O as Aspire (K & B) Broadcast and incorporated at planting
 - P & K applied year before to corn MESZ and Aspire applied as above
- Foliar ProtectionNo foliar protectionFungicide and Insecticide at R3
- Seed TreatmentUntreated or Fungicide onlyFungicide, Insecticide, Nematicide
 - 30 inch row spacing 20 inch row spacing

Strong Start with Banded Fertility

Without banded fertility but with adequate soil test values With banded fertility to provide 75 lb P₂O₅, 23 lb N, 19 lb S, 1.9 lb Zn per acre

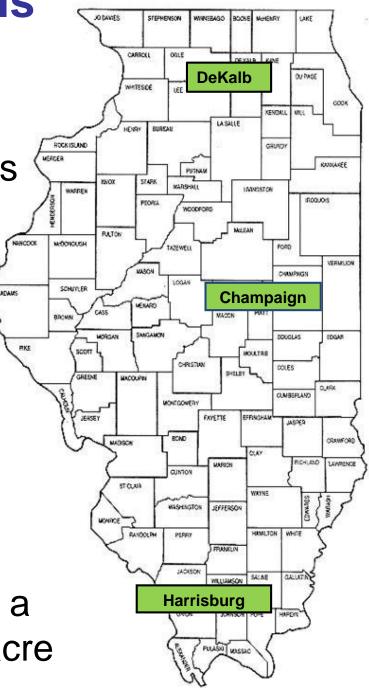
> Crop Physiology

Standard vs High Tech System 2014-15

PhosphorusP applied year before to corn75 lbs P2O5 as MESZ (N, P, S, & Zn)Banded 4-6" under row at planting

Potassium

Row Spacing


P and K

- K applied year before to corn 75 lbs K₂O as Aspire (K & B) Broadcast and incorporated at planting
 - P & K applied year before to corn MESZ and Aspire applied as above
- Foliar ProtectionNo foliar protectionFungicide and Insecticide at R3
- Seed TreatmentUntreated or Fungicide onlyFungicide, Insecticide, Nematicide
 - 30 inch row spacing 20 inch row spacing

Soybean Management Trials 2014 and 2015

- 3 sites in Illinois with:
 - 2 trials at 3 locations in two years
 - Banded phosphate or broadcast potassium, or both at planting
 - Different company seed (Asgrow, Syngenta, Croplan) and foliar protection products: BASF or Syngenta
 - Normal and full maturity variety
 - All in 30 inch vs 20 inch rows, at a seeding rate of 160,000 plants/acre

Yield Response to Management 2014-15

Location	Standard	High Tech	Δ
		bushels acre ⁻¹ —	
DeKalb	63.0	76.4	+13.4*
Champaign	78.4	98.2	+19.8*
Harrisburg	68.3	78.0	+9.6*
Average	70.0	84.2	+14.2*

*Significant at $P \le 0.05$. Average of 12 trials in 2014 and 2015, with two varieties in each trial

Standard vs High Tech System 2014-15

PhosphorusP applied year before to corn75 lbs P2O5 as MESZ (N, P, S, & Zn)Banded 4-6" under row at planting

Potassium

Row Spacing

P and K

- K applied year before to corn 75 lbs K₂O as Aspire (K & B) Broadcast and incorporated at planting
 - P & K applied year before to corn MESZ and Aspire applied as above
- Foliar ProtectionNo foliar protectionFungicide and Insecticide at R3
- Seed TreatmentUntreated or Fungicide onlyFungicide, Insecticide, Nematicide
 - 30 inch row spacing 20 inch row spacing

Soybean Omission Plot Design

MANAGEMENT FACTORS

	Treatment	Phosphate	Potassium	P & K	Foliar Protec	Seed treatment
	HIGH TECH	Yes	Yes	Yes	Yes	Full
gy	-Phosphate	None	Yes	Yes	Yes	Full
hnolo	-Potassium	Yes	None	Yes	Yes	Full
Decrease Technology	-P and K	Yes	Yes	None	Yes	Full
creas	-Foliar Protection	Yes	Yes	Yes	None	Full
De	-Seed Treatment	Yes	Yes	Yes	Yes	Basic
	TRADITIONAL	None	None	None	None	Basic
	+Phosphate	Yes	None	None	None	Basic
ology	+Potassium	None	Yes	None	None	Basic
schne	+P and K	None	None	Yes	None	Basic
Add Technology	+Foliar Protection	None	None	None	Yes	Basic
*	+Seed Treatment	None	None	None	None	Full
						Crop

Physiology

Treatments evaluated in 30 and 20 inch row spacing

Add One Enhanced Factor to Standard Management				
	Standard	d System		
Add One Enhanced Factor	Yield	Δ		
	bushe	els acre-1		
Standard Management	70.0			
+Phosphorus (as MESZ also N,S, Zn)	74.7	+4.7*		
+Potassium (as Aspire also B)	69.6	-0.4		
+Phosphorus & Potassium	74.4	+4.4*		
+Fungicide & Insecticide (R3)	72.6	+2.6*		
+Seed Treatment (at planting)	71.4	+1.4		
+Row Spacing (20 inch rows)	74.2	+4.2*		
*Significantly different from standard at $P \le 0.05$.		Crop		

Average of 12 trials over 2014 and 2015 with two varieties in each trial

Omit One Enhanced Factor from High Tech System

High Tech System

Omit One Enhanced Factor	Yield	Δ
	bushels acre ⁻¹	
High Tech all Six Factors	84.2	
-Phosphorus (fertility previous corn)	78.8	-5.4*
-Potassium (fertility previous corn)	84.8	+0.6
-Phosphorus & Potassium	78.2	-6.0*
-Fungicide & Insecticide	81.0	-3.2*
-Seed Treatment (none or base)	81.8	-2.4*
-Row Space (30 inch rows)	75.7	-8.5*
*Significantly different from standard at <i>P</i> ≤ 0.05. Average of 12 trials over 2014 and 2015 with two variet	Crop Physiology	

Soybean Omission Plots – Ave of 2014 & 2015 Trials

	Standard		High Tech	
Factor	Yield	Δ	Yield	Δ
	bushel acre ⁻¹			
None or All	70.0		84.2	
Phosphate	74.7	+4.7*	78.8	-5.4*
Potassium	69.6	-0.4	84.8	+0.6
P & K	74.4	+4.4*	78.2	-6.0*
Fung. + Insect.	72.6	+2.6*	81.0	-3.2*
Seed Treatment	71.4	+1.4	81.8	-2.4*
Row Spacing	74.2	+4.2*	75.7	-8.5*

*Significantly different at $P \le 0.05$.

Average of 12 trials over 2014 and 2015 with two varieties in each trial

- Soybean yield can be increased with better crop management
- Soil fertility, particularly phosphorus is one of the most important management factors for increasing soybean yields
- Variety makes a big difference and usually the fullest maturity gives the highest yield

- No such thing as a soybean N credit as soybean removes more N from the soil than it gets from the nodules
- Sometimes nitrogen fertilizer can increase yield with nitrate containing or controlled release sources usually being the most effective

- 60% of soybean yield comes from nodes 7-13, so it is important to protect leaves at those nodes, which would occur with an R3 spray
- Adding one more pod to each soybean plant increases yield by two bushels per acre

 Each of the six secrets can increase yield and when combined into a system they can act synergistically

Acknowledgements Personnel

- Brad Bandy
- Tryston Beyrer
- Brad Bernhard
- Jacob Bennett
- •Ryan Becker
- Ross Bender
- Gabriel Bigolin
- •Tom Boas
- Alex Brauman
- Blake Burd
- Fernando Cantao
- Narjara Cantelmo
- Renato Carmargos
 Katie Parker Hayden Cole

- Jared Fender
- Luke Frantz
- •Laura Gentry
- Jason Haegele
- Max Havens
- Andrew Harmon
- •Cole Hendrix
- Adam Henninger
- Shelby Mann
- Jack Marshall
- Josh Morgan
- Shawn O'Brien
- •Ellie Raup
- Adriano Mastrodomenico
- Ernesto Cervantes-Martinez

- Alvero Santos
- Ana Scavone
- Juliann Seebauer
- •Cole Stalter
- •Jiying Sun
- Trever Teel
- Rita Teixeira
- Martín Uribelarrea
- Mike Vincent
- Alison Vogel
- Kyle Vogelzang
- Wendy White
- Eric Winans
- Peng Yan

Past & Current Crop Physiology Lab Sites & Farm Cooperators

- DeKalb Eric Lawler H.B. Babson Farms
- Yorkville Bob Stewart Stewart Farms LLC
- **Champaign UI Research Farm**
- Harrisburg Scott Berry Berry Farms

The Crop Physiology Laboratory Financial and Product Support for 2017

- Actagro
- Agricen
- •Agrium
- •Agrocete
- •Avunia
- •BASF
- Calmer Corn Heads
- Compass Minerals
- Crop Production Services
- •Fluid Fertilizer Foundation •FMC
- Helena Chemical Company
- Illinois Soybean AssociationIllini FS
- Italpollina
- •John Deere

- Monsanto
- Mosaic
- Montag Mfg
- Netafim
- •QLF
- Rosen's
- •Sipcam Bio
- Sirius Minerals
- SoilBiotics
- Solvay
- Syngenta
- •Timac Agro
- Valent
- Verdesian
- West Central
- WinField United

Special Thanks: Kathy Zander and SDABA For more information: http://cropphysiology.cropsci.illinois.edu Crop Physiology Laboratory at the University of Illinois