NARSA What does Durability Testing tell the Radiator Shop **Frank Perrone** Sept. 21st, 2017

Overview

The purpose of this presentation is to offer some guidelines for heat exchanger leak analysis and determining the potential "root cause" for failure, thus providing better service for customers

HOW!

- All product delivered for OEM applications is validated in both the Design & Launch Phase
- Rigorous testing is completed which is correlated to replicate known field failures, along with the identification of unknown issues
- Knowing the correlation of failure type to type of test run provides insight into why a heat exchanger may have failed, thus providing the Technician with information to help identify the "real" problem for heat exchanger failure
- By focusing on just 5 test types: Vibration, Thermal cycle, Pressure cycle, Salt Spray, & Coolant Degradation, the vast majority of all failures can be tied to the "Real Root Cause"

Description of Validation Tests

Thermal Cycle

- Repeat cycling of hot & cold test medium (air, coolant, oil) through the component
- Rapid Change between Hot & Cold Creates Thermal Shock
- Hot Temperature at maximum seen in vehicle Thermal Expansion
- Cold shock to create representative strain cycle and to accelerate test
- Tested with external component that may restrict thermal expansion.
- Opposing test mediums (ambient air, coolant) included where appropriate

Pressure Cycle

- Repeated Pressure Pulsations at Peak Pressure level seen in vehicle
- Rapid Pressure Rise (< I seconds) to simulate spikes</p>
- High & Low Pressure Held until stable at outlet ensures complete cycle
- Low Pressure Atmosphere or Flow Pressure ensures complete cycle
- Test medium heated to maximum seen in vehicle

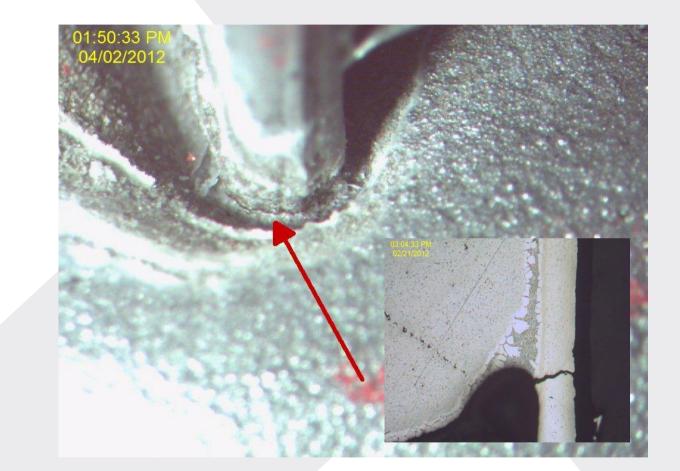
Description of Validation Tests

Vibration

- Collect actual in-vehicle loads & cooling module response to identify damaging signals across the full range of chassis and engine frequencies
- FEA & Single Axis electrodynamic vibration testing to specify isolators and structural designs that will provide good attenuation of the critical frequencies.
- Conventional multi-axis shake test to evaluate lower chassis driven frequencies

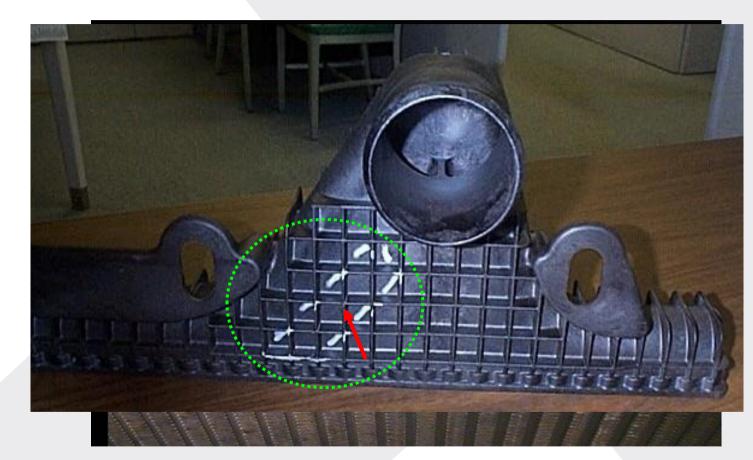
Salt Spray

- ASTM G85A3 SWAAT Test (Sea Water Acidic Acid Test) Part sits in a SWAAT fog/spray for 21 days at which time they are leak tested.
- Conclusion from SAE Technical Paper 971857, <u>Corrosion Performance Of Long-Life Automobile Radiators by Arthur C. Scott:</u>
 "4-8 days of SWAAT exposure are approximately equivalent to 7-10 years field exposure in severe conditions."

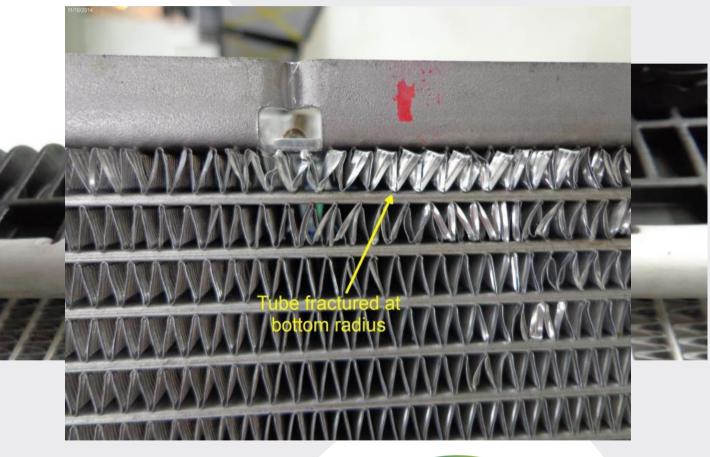

Coolant Degradation

- Cleanliness Testing of Heat Exchangers via SAE J-1726 or Customer Specifications ensure the Heat Exchanger will not cause a problem with coolant degradation
- Various tests are used to identify that Coolant is degraded
 - Ion Chromatography (IC) Tests for Glycolates in Coolant
 - pH testing
 - Atomic Absorption Spectroscopy (AAS) Test coolants or deposits looking for metals like high levels of aluminum, copper, or iron

RADIATOR – Thermal Cycle


- How to identify:
- Tube at Header Leaks
- Typically tubes closest to side plates
- Side Plate Fractures
- What to look for:
- Mounting without thermal expansion
 - Lack of wear, isolators, structure
 - Hard mounts
 - Anything which does not allow for core growth
 - No Side Plate thermal break / cut
 - Generally a design issue

RADIATOR – Pressure Cycle (Tank & Crimp)


- How to identify:
- Crimp Leak
- Tank Fracture
- What to look for:
- Large plastic tank deformation
- Large radiator hose deformation
- Without data collection, it is hard to identify whether Design or Vehicle conditions is the cause

RADIATOR – Pressure Cycle (Header & Core)

- How to identify:
- Tube Expansion, Crushed Fin
- Header Fractures
- What to look for:
- Large plastic tank deformation
- Large radiator hose deformation
- Without data collection, it is hard to identify whether Design or Vehicle conditions is the cause

RADIATOR – Vibration

- How to identify:
- Fin Cracking / Crush leads to pressure cycle
- Tank Fracture
- Structure Fracture
- What to look for:
- Wear where parts have rubbed together
- Isolator Wear
- Structure wear at mounting points
- Several other vehicle system failing
- Without data collection, it is hard to identify whether Design or Vehicle conditions is the cause

RADIATOR – Coolant Degradation

- How to identify:
- Solid deposits inside radiator
- Pugged Tubes
- Plastic Tank Degradation
- Coolant Sample Test

What to look for:

- Coolant color change
- Amonia Smell
- Coolant pH outside of manufacturers specs
- Almost always a vehicle or maintenance issue

CHARGE AIR COOLER – Thermal Cycle

• How to identify:

- Tube at Header Leaks
- Typically tubes closest to side plates
- Side Plate Fractures
- What to look for:
- Mounting without thermal expansion
 - Lack of wear, isolators, structure
 - Hard mounts
 - Anything which does not allow for core growth
 - No Side Plate thermal break / cut
 - Without data collection, it is hard to identify whether Design or Vehicle conditions is the cause

CHARGE AIR COOLER – Pressure Cycle

- How to identify:
- Tube Expansion, Crushed Fin
- Header Fractures
- Tie Bar Fractures

- What to look for:
- Waste Gate Failures
- Turbo Blow By Oil in CAC
- Hose failures, Blow offs
- Without data collection, it is hard to identify whether Design or Vehicle conditions is the cause

CHARGE AIR COOLER – Vibration

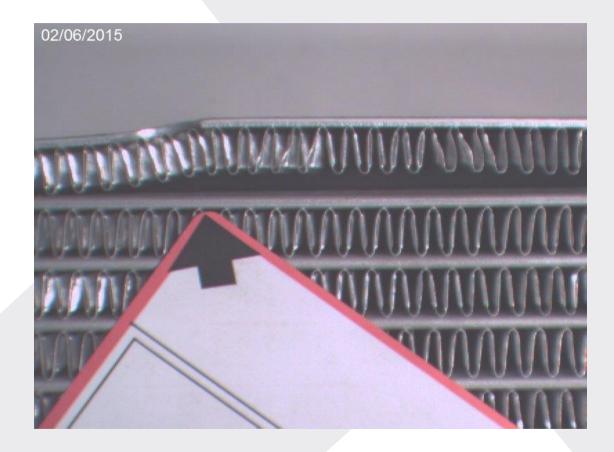
- How to identify:
- Cracks in mounting features
- Outside tube cracks

- What to look for:
- Wear where parts have rubbed together
- Isolator Wear
- Structure wear at mounting points
- Several other vehicle systems failing
- Without data collection, it is hard to identify whether Design or Vehicle conditions is the cause

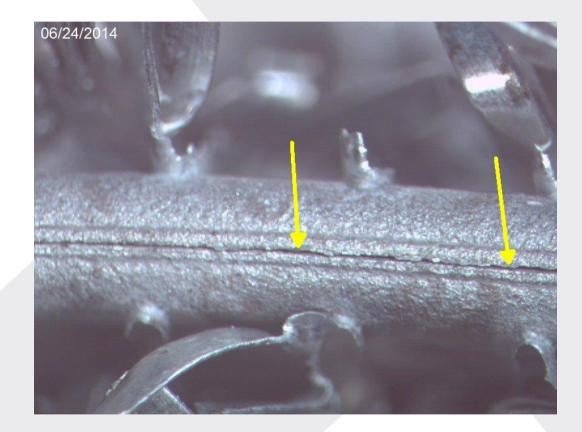
RADIATOR & CAC – Salt Spray

- How to identify:
- Corrosion pits
- White deposits
- Brittle fin, loose bond to tubes

- What to look for:
- Under Carraige Red Rust
- Structure Rust
- Heavy Salt Deposits
- Electrical failures
- Almost always a filed maintenance issue



- Hole in braze fillet
 - Effects both Radiator and CAC



- Non Brazed Fin
 - Effects both Radiator and CAC

- Split weld on tube
 - Effects both Radiator and CAC

- Hole in weld
- Be aware that CAC's have an allowable leak rate
- Sometimes small leaks can be OK
- Follow TMC Reccomended guidelines
 - TMC RP 358

What Have We Learned??

- Product Validation is done for all OEM released product
- Validation Tests are specifically designed to correlate with field failures
- Field failures can be easily traced to the "real root cause" by matching the failure type with the test which causes it
- It is often very hard to identify if the failure is due to a lack of correct design, or the vehicle is operating over specification
- TltanX builds OEM Validated Product made every day

Thank you

WE HAVE YET TO SEE AN ENGINE WE CAN'T COOL

