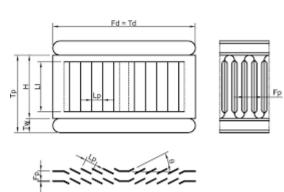


Email: <u>JYeremian@thermodyne.ca</u> | Web: <u>www.thermodyne.ca</u>

OEM Versus After Market

Heat cannot be patented or copy written

Design can be patented or copy written


Various Radiator Designs and principal of heat transfer for each type:

<u>Tubes</u>

- Round fins and their characteristics- 3 stages of heat transfer, water forced convection, metal heat transfer, air forced convection
- Flat tubes and their characteristics
- Finned tubes and their characteristics

Fins:

- Louvered Fins
- Dimpled fins
- Formed fins

Painted Radiators

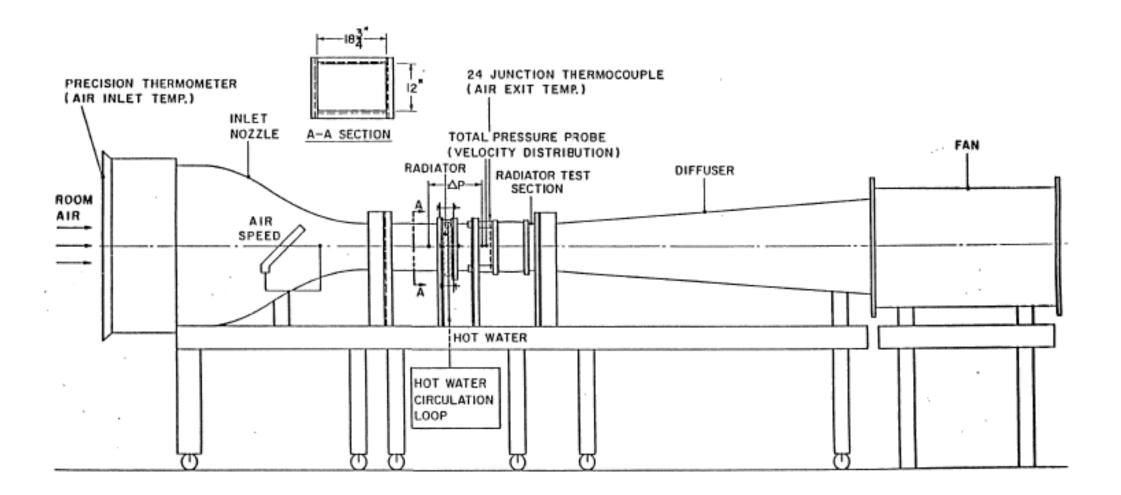
Used Radiators

Microchannel Heat Exchangers

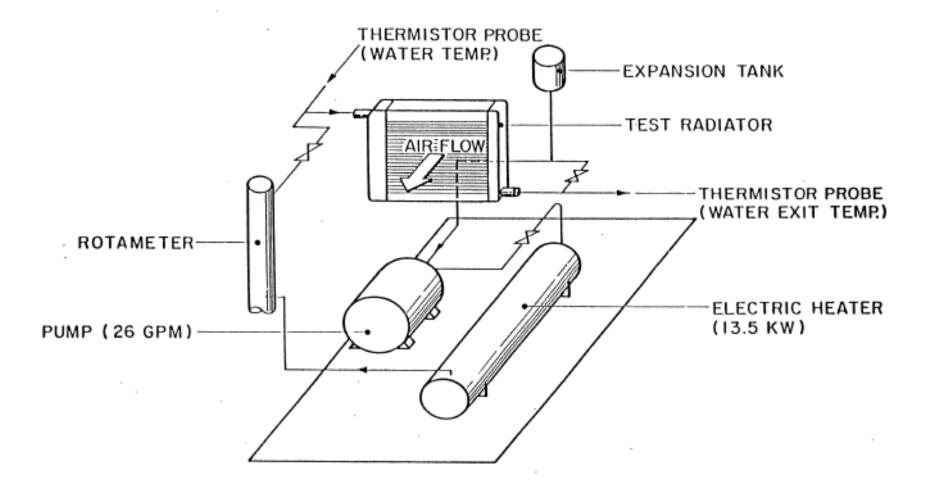
Various flow characteristics:

- Single Pass and Multiple Pass Characteristics
- Single row and multiple raw characteristics.
- Water only versus Glycol mix Radiator characteristics.

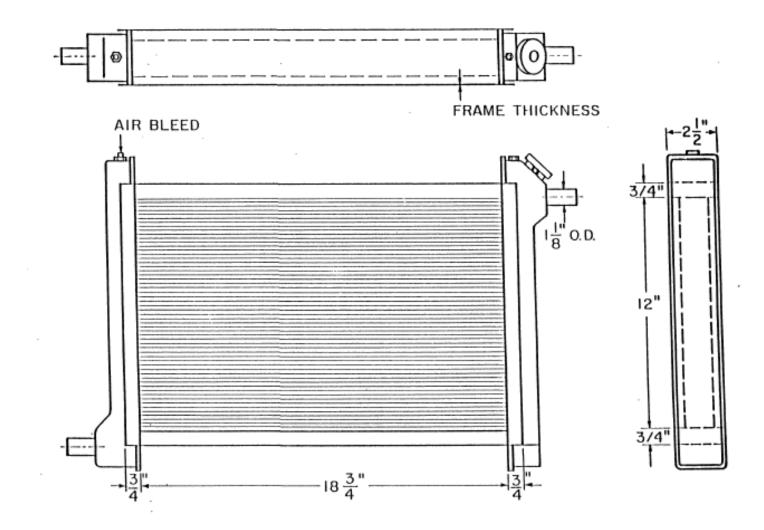
Relationship between Heat and Pressure Drop

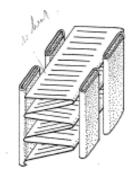

Wind Tunnel Testing

Description of various wind tunnel test facilities:


- Fan and Radiator Simulating car situations, forward and backward fans – Disadvantages
- Streamlined wind tunnel with suction fan type. Scientific type.
- Wind tunnel testing instrumentation- Electronic versus physical instrumentation, Principle of Pitot Tube- Temperature distribution across the air flow surface (after the radiator), etc.
- Wind tunnel testing procedure, obtaining heat versus air speed, head loss versus air speed, "j" and "f" Factors

Email: JYeremian@thermodyne.ca | Web: www.thermodyne.ca




Email: <u>JYeremian@thermodyne.ca</u> | Web: <u>www.thermodyne.ca</u>

- Principal of heat transfer from water to air.
- Water side forced convection (turbulent and streamlined, dimpled tubes)
- Heat transfer through tubes and the effect of various material- negligible.
- Air side forced convection.
- Heat Transfer formulas
- "j" and "f" factor Formulas
- How to apply them
- Various Software

$$j_H = \frac{f}{2} = \frac{h}{\rho C_p V} \operatorname{Pr}^{2/3}$$

ι.

$$Q_{a} = \rho u_{fr} A_{fr} c_{p,a} (T_{aout} - T_{a,in})$$
$$Q_{w} = m_{w} c_{p,w} (T_{w,in} - T_{w,out})$$

The fin efficiency (ηf) for cores using "flat-oval" tubes is given by

$$\eta_{\rm f} = \tanh \, ({\rm ml})/{\rm ml}$$
, where m = $(2h_{\rm o}/k_{\rm f}t_{\rm f})^{1/2}$

The surface efficiency is given by

$$\eta = 1 - (1 - \eta_f) A_f / A_o$$

From the above UA formula, ho is determined, and

$$j = h_o P r^{2/3} / \rho \cdot u_c c_p$$

Email: JYeremian@thermodyne.ca | Web: www.thermodyne.ca

NOMENCLATURE

σ	Air-side contraction ratio $(=A_c/A_{fr})$
$\Delta \mathbf{P}$	Air pressure drop
¢	Core effectiveness
μ	Air viscosity
ρ	Air mass density
A _c	Contracted air-side air flow area
A _f	Fin surface area
A _{fr}	Core frontal area
A _i	Water-side heat transfer area
Ao	Air-side surface area
С	Capacity rate (=mc _p)
C _{max}	Maximum heat capacity rate
C _{min}	Minimum heat capacity rate
°p	Constant pressure specific heat
c _{pa}	Constant pressure specific heat of the air
^c pw	Constant pressure specific heat of the water

THERMODYNE ENGINEERING LTD 78-82 Mack Avenue, Toronto, Canada M11, 1M9 | Tel: +1 (416) 754 8686

78-82 Mack Avenue, Toronto, Canada M1L 1M9 | Tel: +1 (416) 754 8686 Email: <u>JYeremian@thermodyne.ca</u> | Web: <u>www.thermodyne.ca</u>

C _r	Ratio of minimum to maximum heat capacity rate
D _h	Hydraulic diameter
f	Air-side friction factor
g _c	Physical constant that expresses the proportionality between force
	and momentum change
h _i	Water-side heat transfer coefficient
h _o	Air-side heat transfer coefficient
HB	Heat balance
ITD	Difference between inlet water temperature and inlet air temperature
j	Air-side Colburn j-factor
	-
k	Thermal conductivity
k m	Thermal conductivity Mass flow rate
m	
	Mass flow rate
m m _w	Mass flow rate Water mass flow rate

78-82 Mack Avenue, Toronto, Canada M11, 1M9 | Tel: +1 (416) 754 8686

78-82 Mack Avenue, Toronto, Canada M1L 1M9 | Tel: +1 (416) 754 8686 Email: <u>JYeremian@thermodyne.ca</u> | Web: <u>www.thermodyne.ca</u>

Pr	Prandtl number of the air
Q _a	Air heat transfer rate
Q _{ave}	Average heat transfer rate of the air and water
Qw	Water heat transfer rate
Rei	Water-side Reynolds number based on the hydraulic diameter
Reo	Air-side Reynolds number based on the hydraulic diameter
Rw	Thermal resistance of the tube wall
T _{a,in}	Inlet air temperature
T _{a,out}	Exit air temperature
TD	Tube depth
т _w	Tube width
T _{w,in}	Inlet water temperature
T _{w,out}	Exit water temperature
UA	Product of the overall heat transfer coefficient and the total heat transfer area
uc	Air velocity through the contracted flow area
u _{fr}	Air frontal velocity

THERMODYNE ENGINEERING LTD 78-82 Mack Avenue, Toronto, Canada M1L 1M9 | Tel: +1 (416) 754 8686

Email: JYeremian@thermodyne.ca | Web: www.thermodyne.ca

Heat Transfer Thermal Resistance

 $R_t = R_{cool} + R_{wall} + R_{air}$

$$R_{cool} = 1/(h_{cool}A_{cool})$$

 $R_{wall} = negligible$

$$\mathbf{R}_{\mathrm{air}} = 1/(\mathbf{h}_{\mathrm{air}} \cdot \boldsymbol{\eta} \cdot \mathbf{A}_{\mathrm{air}})$$

 A_{cool} = coolant-side heat transfer surface area

- A_{air} = air-side heat transfer surface area
- $\eta = \text{fin efficiency}$

* Q is proportional to $A \cdot \Delta T$, h is the constant of proportionality i.e. $Q \sim A \cdot \Delta T \quad \dots > \quad Q = h \cdot A \cdot \Delta T$ $h_{cool} = coolant side heat transfer coefficient$

 h_{air} = air side thermal heat transfer coefficient

j = dimensionless heat transfer coefficient

=
$$[h/(\rho \cdot C_p \cdot V)] \cdot Pr^{2/3}$$

where:

h = heat transfer coefficient $\rho = fluid density$ $C_p = specific heat$ V = fluid velocity $Pr = \nu/\alpha$ $\nu = kinematic viscosity of the fluid$ $\alpha = thermal diffusivity of the fluid$

 $h = j \cdot \rho \cdot C_p \cdot V \cdot Pr^{-2/3}$

h then is used in the expression for the overall heat transfer coefficient, U

Email: JYeremian@thermodyne.ca | Web: www.thermodyne.ca

f = dimensionless pressure drop

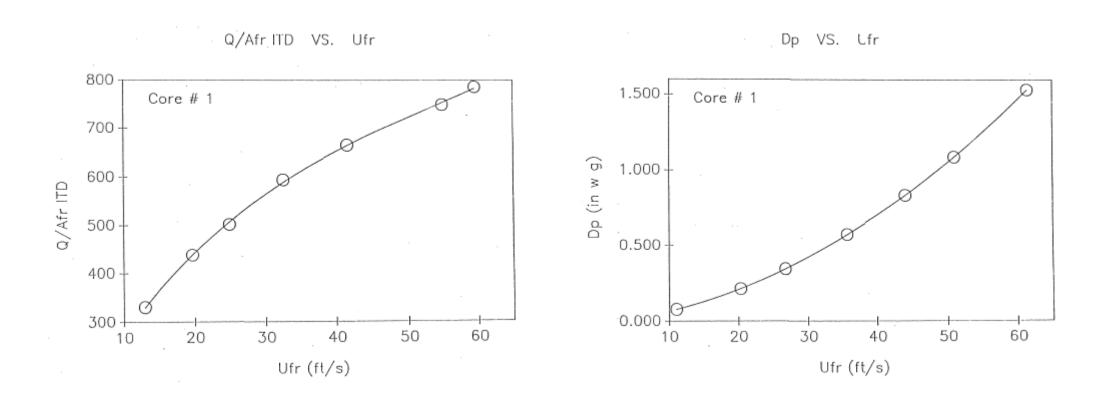
$$= \Delta p / [(L/D) \cdot (\rho \cdot V^2 \cdot 0.5)]$$

where

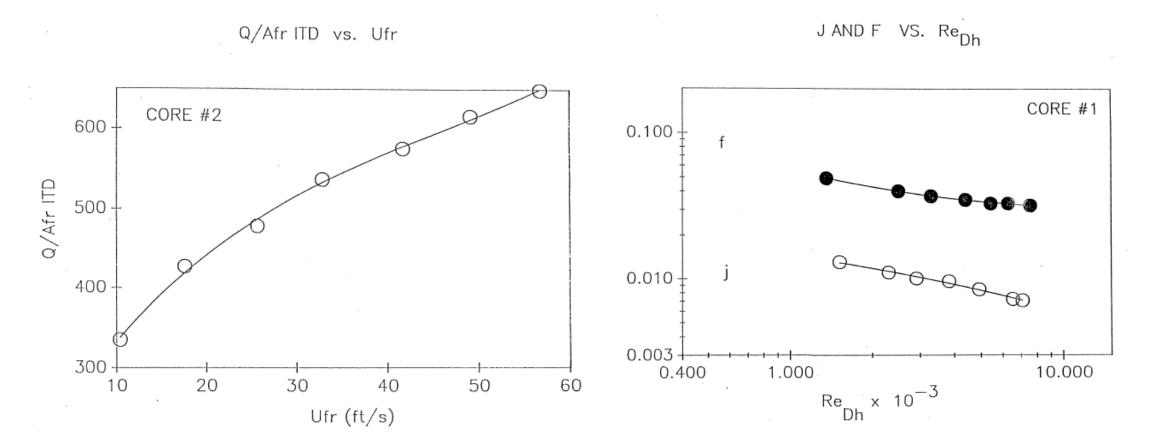
- $\Delta p = air-side pressure$ $\Delta p = f \cdot (L/D) \cdot (0.5 \cdot \rho \cdot V^2)$
- L = depth of radiator f is determined from correlations or test data and then the pressure drop is
- D = hydraulic diamet calculated from the above expression
- $\rho =$ fluid density
- V =fluid velocity

.

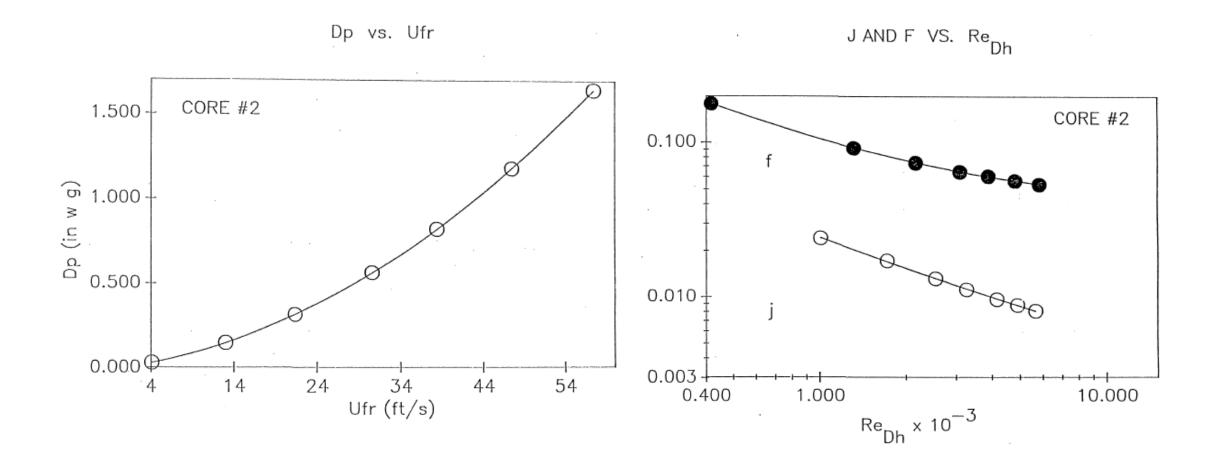
78-82 Mack Avenue, Toronto, Canada M1L 1M9 | Tel: +1 (416) 754 8686 Email: <u>JYeremian@thermodyne.ca</u> | Web: <u>www.thermodyne.ca</u>

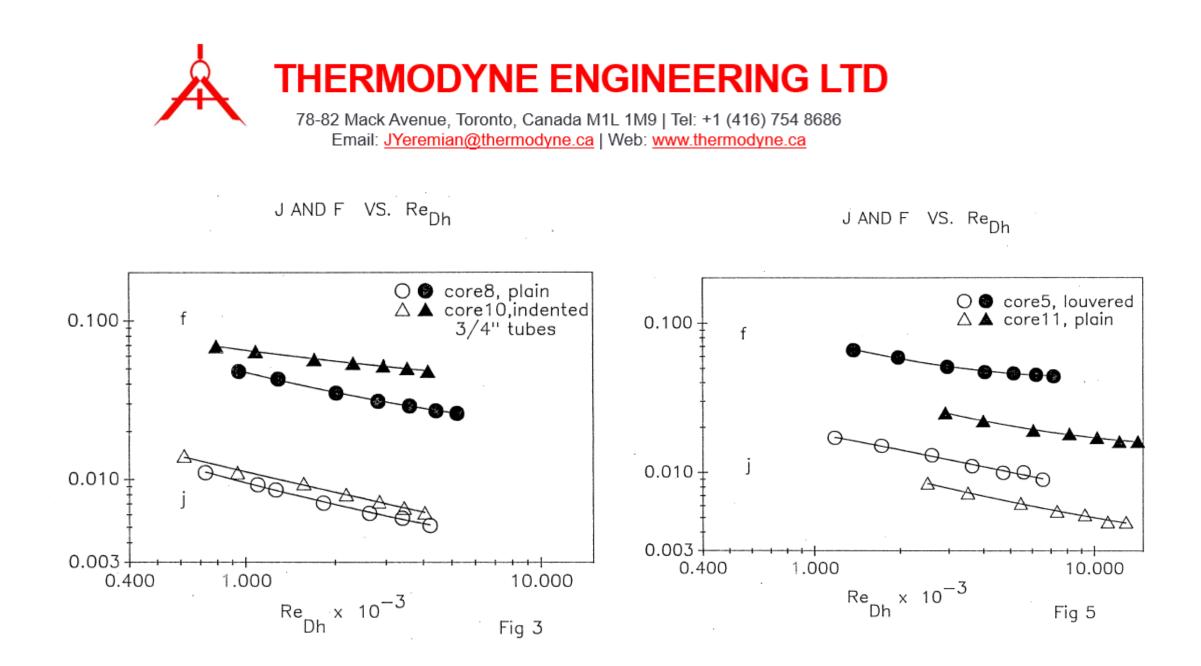

JFCURV PROGRAM OUTPUT

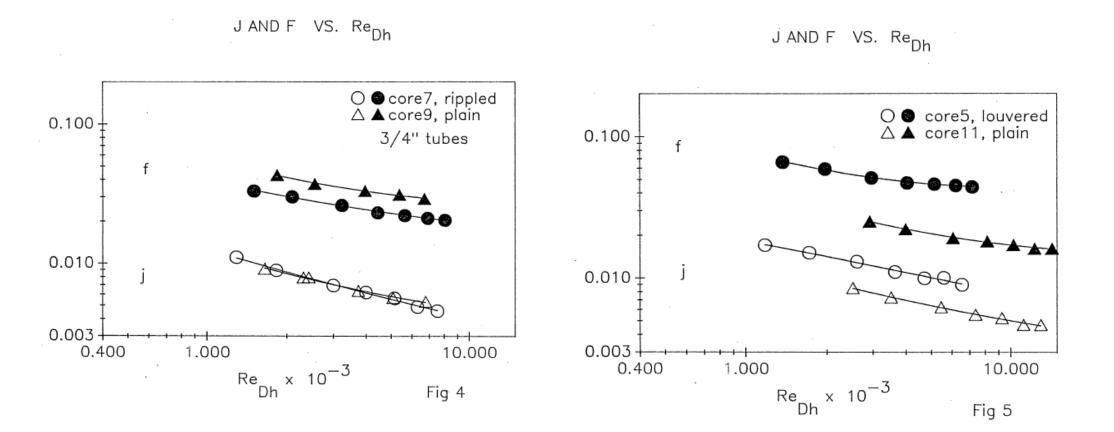
ADIATOR SPECIFICATIONS:	· · ·			
EADER WIDTH (in) = 12.00 NUMBER OF TUBE ROWS = 1.0	CORE HEIGHT (in) = 18.75	- PRESSURE DROP TEST DATA		
TUBE DEPTH (in) = .740 TUBE PITCH (in) = .440	TUBE WIDTH (in) = .080 TUBE WALL THICKNESS (in) = .0060	AVERAGE TEST AIR TEMPERATURE	= 80.0 F	
FINS PER INCH = 16.00 FIN THICKNESS = .0025	FIN DEPTH (in) = .810	Ufr (ft/s) DPair (in H2	0) f	ReD G/MU (1/ft)
OPERATING CONDITIONS: - HEAT TRANSFER TEST DATA	- - -	6.82 .0711 14.40 .2150 22.34 .4234	.1215 .0803 .0645	442.3 52598.4 933.8 111058.1 1448.7 172294.3
Ufr Tai Twi (ft/s) (F) (F)	UA/Afr Q/(Afr*ITD) GAMMA (Btu/h*ft2*F) (Btu/h*ft2*F) (lbm/h*in)	31.26 .6980 39.51 1.0114 47.84 1.3852	.0533 .0477 .0441	2027.1 241088.7 2562.1 304715.7 3102.3 368959.7
8.2 93.0 172.3 13.9 95.1 152.2 18.9 96.2 144.1 26.7 95.9 136.2	899.5 555.5 1295.6 946.9 638.0 1284.0	= B * [(G/MU) ** A]	.0414	3689.2 438756.7
34.5 95.5 131.9 50.5 96.4 126.8		where: A =5130	B = 31.4702	(RMS ERROR = 1.84 %)

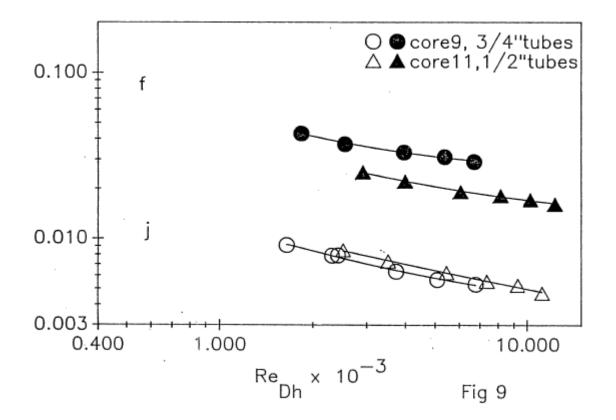

** GAMMA = MASS FLOW RATE PER UNIT CORE WIDTH

RED G/MU (1/ft) j .0387 474.7 56459.5 99206.1 .0300 834.1 136363.2 .0237 1146.6 195848.1 .0186 1646.7 .0166 2138.1 254288.4 .0132 3150.4 374681.8 j = B * [(G/MU) ** A] where: A = -.5801 B = 22.5878 (RMS ERROR = 2.66 %)








Email: <u>JYeremian@thermodyne.ca</u> | Web: <u>www.thermodyne.ca</u>

 $\bigcirc \odot$ core2, 2 rows $\triangle \blacktriangle$ core3, 3 rows ○ I core5, 6FPI
△ ▲ core6, 13FPI 0.100 -0.100 0.010 + 0.010 -0.003 + 0.003 1.000 0.400 10.000 0.400 1.000 10.000 × 10⁻³ Re Dh $Re_{Dh} \times 10^{-3}$ Fig 6 Fig 7

- Various Types of Tests:
- Pressure Cycling
- Temperature Cycling
- Vibration, sine sweep, random, natural frequency.