

NARSA Presentation

NARSA Presentation

NARSA Presentation

NARSA Presentation

NARSA Presentation

Chip Data:	Ship Via:	Confirmed To:
6/10/2015	Our Truck	Roy Pennington
Description:		
Day Rental 6K Di and nozzle set.	esel Pressure Washer with	1 50" hose, gun, lance
Day rental turbo r	iozzle	
Gallon of Diesel		
		9 50 %

NARSA Presentation

9/22/2017

FINNED TUBE OIL COOLERS:

FIN TUBE TECHNOLOGY BREAKDOWN

9/22/2017

Two Main Types of Industrial Finned Tube Technology

9/22/2017

Continuous/Plate/Compact Fin

A simple design heat exchanger with stamped plates and tubes

Continuous = tubes are not finned individually (round, spiral)

NARSA Presentation

9/22/2017

Continuous/Plate Fin

Metal sheet as wide as the specified coil is deep (1 row – 8 rows) Die stamps coil with holes for the tubes Hole are usually aligned or staggered Dies are made with specific pattern geometry (waffle, etc)

9/22/2017

Continuous/Plate Fin When To Use

Air/exhaust is outside media Environment is suitable for fins Heavily fouled air should use bare tubes (no fins) Temperatures and pressures are within its limits Not suitable for API (American Petroleum Institute) requirements

Outside air flow is usually provided by a fan when its in an open environment (so air pressure is low) or its provided by a fan/blower when its inside ductwork, then ductwork seams will likely be limiting factor for max air pressure.

9/22/2017

Continuous/Plate Fin

Industries

Power Oil and Gas Food and Beverage Refrigeration Chemical Heavy and light industries Applications

Gas and diesel gensets Auxiliary cooling Gas turbine lube oil cooling Process cooling Compressor cooling Heat recovery Steam coils (air preheaters)

NARSA Presentation

9/22/2017

Continuous/Plate Fin Main Components

9/22/2017

Continuous/Plate Fin

NARSA Presentation

9/22/2017

Continuous/Plate Fin

Flat

Waffle

Advanced Ring

NARSA Presentation

9/22/2017

Continuous/Plate Fin Headers

Pipe

'Omega'

"Return bends" (no header)

NARSA Presentation

9/22/2017

Continuous/Plate Fin Pipe Headers

9/22/2017

Continuous/Plate Fin

- Fin Materials
 - Aluminum
 - Copper
 - Al Magnesium
- Tube Materials
 - Copper
 - Stainless Steel
 - Carbon Steel
- Bundle Geometry
 - Per vendors tooling
 - # of tube rows thick
 - Tube diameters
 - Max coil length
 - Max coil width

NARSA Presentation

9/22/2017

Continuous/Plate Fin Turbulators

NARSA Presentation

9/22/2017

Continuous/Plate Fin Examples

NARSA Presentation

9/22/2017

Continuous/Plate Fin Examples

NARSA Presentation

9/22/2017

Continuous/Plate Fin Examples

NARSA Presentation

9/22/2017

Individually Finned Tubes

NARSA Presentation

9/22/2017

Individually Finned Tubes

9/22/2017

Individually Finned Tubes Elliptical

- Aerodynamic, less pressure drop, less noise & less soiling than round finned tubes
- Higher heat transfer per unit of area then round tubes means smaller coil
- Very durable with long life spans (20-30+ years)

NARSA Presentation

9/22/2017

Individually Finned Tubes Elliptical

- Carbon steel tube is elliptical shape ٠
- Carbon steel fins are pressed onto tube •
- Fins are then galvanized onto the tube ٠
- Application range up to 680F ٠
- Broad range of fin spacing and external turbulators

9/22/2017

Individually Finned Tubes Elliptical

Elliptical tubes

- Homogeneous air flow
- 3-10 times less pressure drop

Round tubes

- Turbulent air flow
- Higher pressure drop

9/22/2017

Individually Finned Tubes Round

Round finned tube – thickness required to meet performance

9/22/2017

Individually Finned Tubes Round vs Elliptical

Elliptical finned tube – thickness required to meet performance

9/22/2017

Individually Finned Tubes Round vs Elliptical vs Plate Fin

Plate finned tube – thickness required to meet performance

NARSA Presentation

9/22/2017

DOUBLE TUBE SAFETY HEAT EXCHANGERS:

PROS AND WHERE TO USE THEM

9/22/2017

FIELDS OF APPLICATION

Energy / Power Oil & Gas Chemical Industry Marine Refrigeration Industry Process Technology Pharmaceutical Industry Food Industry

9/22/2017

TYPICAL APPLICATIONS

- Natural gas heating (Gas pressure relief stations; Underground storage; "Performance" heating in front of gas turbines) and cooling
- LNG heating and evaporation
- Chlorine liquefaction / Ammonia evaporation
- Production of chemical products (safety critical operations), e.g. polysilicon
- Transformer oil cooling
- Direct cooling of gear oil and turbine oil
- Thermal oil heating and cooling

FUNCTION

- Tube bundle of double-wall design, each end fitted with two tube sheets
- If a tube wall develops a defect on the primary side, medium enters a interbarrier space chamber through small channels between the two tubes inserted into each other and triggers a check signal
- Release of an alarm signal
- Separation of products / fluids by a second, intact tube wall
- Continued operation of the system possible until next regular maintenance
- Avoidance of cost-intensive downtimes, extensive cleaning, contamination/pollution of complete batches

FOCUSES

- 1. Assuring of secure handling of safety-critical media
- 2. Assuring of high availability of production plants
- 3. Assuring of a continuously high product quality
- 4. Prevention of product contamination

Conclusion

The controlled media separation by double-tube technology protects your company from economic damage, liability by your employees and loss of image. Furthermore, our system prevents your company from negative consequences in the context of compliance regulations.

9/22/2017

DTSHX TECHNOLOGY - FEATURES

Cross Section Double Tube

9/22/2017

INSIDE THE SHELL – PLATE FIN OPTION

9/22/2017

DTSHX TECHNOLOGY -LEAKAGE MONITORING

Normal operation

Leakage outer tube

Leakage inner tube

9/22/2017

TYPES OF LEAKAGE SWITCHES

Selection acc. to media demands for plant operation

- Visual display device
- Display device with magnetic float switch
- Display device with magnetic float switch and auxiliary electrode monitoring function to identify the leakage medium
- Pressure monitoring device (vacuum or overpressure)

Installation Example

Rupture disc broken: optical and electrical indication of failure

9/22/2017

DTSHX FOR THE CHEMICAL INDUSTRY

Double Tube Safety Heat Exchanger for the Chemical and Pharmaceutical Industry

9/22/2017

DTSHX FOR THE CHEMICAL INDUSTRY

Condensation of a chlorine gas mixture

chlorine gas mixture/ ammonia

10bar / 100 °C and 60 °C (on tube side)

16 bar / 100 °C und -60 °C (on shell side)

Double Tube Safety Heat Exchanger for the Chemical, Food and Refrigeration Industry

9/22/2017

DTSHX FOR THE CHEMICAL INDUSTRY

		Real Property lies
Example		
Application	Condensation of a Chlorosilane mixture within natural circulation	
Media	Chlorosilane mixture/ water vapor	
Design9.1 bar / 160 °C andConditions-10 °C (on tube side)		
	9.1 bar / 160 °C and -10 °C (on shell side)	

Double Tube Safety Heat Exchanger for the Chlorosilane Industry

9/22/2017

GAS PREHEATER SKID

Natural gas preheater skid with Renzmann Double Tube Safety Heat Exchanger

NARSA Presentation

NARSA Presentation

NARSA Presentation

NARSA Presentation

NARSA Presentation

9/22/2017

Kevin McGinnis Kelvion Sales Director for Heavy Industries and Mining kevin.mcginnis@kelvion.com

Greg Lauderdale

Kelvion National After Sales & Service Manager greg.lauderdale@kelvion.com

David J. Bienvenu President - Radiator Service Co., Inc. <u>davidradiator@bellsouth.net</u>